GATA3 improves the protective effects of bone marrow-derived mesenchymal stem cells against ischemic stroke induced injury by regulating autophagy through CREG.

2021 
Abstract Background Bone marrow-derived mesenchymal stem cells (BMSCs) transplantation has been demonstrated to benefit functional recovery after ischemic stroke, however, the low survival rate of BMSCs in ischemic microenvironment largely limits its use. Methods Rat BMSCs (rBMSCs) were isolated from SD rats and treated with oxygen glucose deprivation/reoxygenation (OGD) to mimic ischemic microenvironment in vitro. Expression of mRNAs and proteins were assessed by qRT-PCR and western blot, respectively. Cell viability was detected using MTT. ROS level was evaluated by DCFH-DA Assay Kit. TUNEL and flow cytometry analysis were adopted to detect cell apoptosis. Immunofluorescence analysis was used to examine LC3 expression. Dual-luciferase reporter and ChIP assays were employed to determine the interaction between CREG and GATA3. Middle cerebral artery occlusion (MCAO) model was established to mimic ischemic stroke in vivo. TTC staining was used to measure the infarcts area in the brain of MCAO rats. Nissl staining was used to examine the quantity of neurons, and mNSS test was applied to compare behavioral functions of animals. Results The rBMSCs were successfully isolated from SD rats. OGD exposure decreased the expression of GATA3 in rBMSCs, GATA3 overexpression alleviated OGD-induced cell injury and enhanced autophagy. Treatment with autophagy inhibitor (3-MA) abolished the protective effects of GATA3 against OGD-induced cell injury. GATA3 targeted the promoter of CREG and positively regulated its expression. The protective effect of GATA3 overexpression on autophagy during OGD exposure was reversed by CREG knockdown. Moreover, GATA3 overexpression improved the therapeutic effects of BMSCs transplantation on ischemic stroke in vivo. Conclusion Our results indicated that GATA3 overexpression improved the therapeutic effects of rBMSCs transplantation against ischemic stroke induced injury by regulating autophagy through CREG.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []