Stereospecific growth of densely populated rutile mesoporous TiO2 nanoplate films: a facile low temperature chemical synthesis approach

2010 
We report for the first time, using a simple and environmentally benign chemical method, the low temperature synthesis of densely populated upright-standing rutile TiO2 nanoplate films onto a glass substrate from a mixture of titanium trichloride, hydrogen peroxide and thiourea in triply distilled water. The rutile TiO2 nanoplate films (the phase is confirmed from x-ray diffraction analysis, selected area electron diffraction, energy-dispersive x-ray analysis, and Raman shift) are 20–35 nm wide and 100–120 nm long. The chemical reaction kinetics for the growth of these upright-standing TiO2 nanoplate films is also interpreted. Films of TiO2 nanoplates are optically transparent in the visible region with a sharp absorption edge close to 350 nm, confirming an indirect band gap energy of 3.12 eV. The Brunauer–Emmet–Teller surface area, Barret–Joyner–Halenda pore volume and pore diameter, obtained from N2 physisorption studies, are 82 m2 g − 1, 0.0964 cm3 g − 1 and 3.5 nm, respectively, confirming the mesoporosity of scratched rutile TiO2 nanoplate powder that would be ideal for the direct fabrication of nanoscaled devices including upcoming dye-sensitized solar cells and gas sensors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    8
    Citations
    NaN
    KQI
    []