Models for organics removal from vinasse from ethanol production

2018 
Global ethanol production generates almost 100 billion liters per year of a high-strength liquid waste called vinasse. One sustainable method of treating vinasse using environmental biotechnology is anaerobic digestion, which generates biogas that can be used as a renewable energy resource. Although a number of models have been developed for predicting biogas generation rates, no previous study has modeled liquid organic removal rates for vinasse treatment. The goal of this research was thus to develop models for predicting liquid-phase organic removal rates for anaerobic treatment of vinasse. 6-L laboratory-scale batch reactors were filled with vinasse of six different compositions and operated at three different mesophilic temperatures (30, 35, 40 °C). Biochemical and chemical oxygen demand (BOD and COD) were measured over time using Standard Methods 5210B and 5220C. Based on data collected, multiple linear regression equations (R2 = 0.79 and 0.94) were developed to predict first-order rate constants kBOD and kCOD as functions of temperature and vinasse composition (initial values of nitrogen, potassium, phosphorous, and sulfur). The first-order models developed require a small number of readily available input parameters. They apply to treatment of vinasse from ethanol produced from corn and milo; future work can test their applicability to ethanol produced from other feedstocks. The models can be used for sizing/design of reactors for anaerobic treatment of vinasse.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []