Simultaneous Mnemonic and Predictive Representations in the Auditory Cortex

2021 
Recent studies have shown that stimulus history can be decoded via the use of broadband sensory impulses to reactivate mnemonic representations. It has also been shown that predictive mechanisms in the auditory system demonstrate similar tonotopic organization of neural activity as that elicited by the perceived stimuli. However, it remains unclear if the mnemonic and predictive information can be decoded from cortical activity simultaneously and from overlapping neural populations. Here, we recorded neural activity using electrocorticography (ECoG) in the auditory cortex of anesthetized rats while exposed to repeated stimulus sequences, where events within the sequence were occasionally replaced with a broadband noise burst or omitted entirely. We show that both stimulus history and predicted stimuli can be decoded from neural responses to broadband impulse at overlapping latencies but linked to largely independent neural populations. We also demonstrate that predictive representations are learned over the course of stimulation at two distinct time scales, reflected in two dissociable time windows of neural activity. These results establish a valuable tool for investigating the neural mechanisms of passive sequence learning, memory encoding, and prediction mechanisms within a single paradigm, and provide novel evidence for learning predictive representations even under anaesthesia.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []