Retron Editing for Precise Genome Editing without Exogenous Donor DNA in Human Cells

2021 
CRISPR-Cas9 mediated seamless genome editing can be achieved by incorporating donor DNA into the CRISPR-Cas9 target loci via homology-directed repair (HDR), albeit with relative low efficiency due to the inefficient delivery of exogenous DNA. Retrons are bacterial genetic element composed of a non-coding RNA (ncRNA) and reverse transcriptase (RT). Retrons coupled with CRISPR-Cas9 have been shown to enhance precise genome editing via HDR in yeast through fusing guide RNA (gRNA) to the 3′ end of retron ncRNA, producing multicopy single-stranded DNA (msDNA) covalently tethered to gRNA. Here, we further engineered retrons by fusing Cas9 with E.coli RT from different clades and joining gRNA at the 5′ end of retron ncRNA, and found that retron editing can achieve precise genome editing efficiently in human cells. By co- expression of Cas9-RT fusions and retron-ncRNA gRNA (rgRNA) in HEK293T cells, we demonstrated the rates of retron editing at endogenous genomic loci was up to 10 %. We expect our retron editing system could aid in advancing the ex vivo and in vivo therapeutic applications of retron.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []