Free fall tests of the accelerometers of the MICROSCOPE mission

2014 
Abstract The MICROSCOPE mission is fully dedicated to the in-orbit test of the Universality of free fall, the so-called Weak Equivalence Principle (WEP), with an expected accuracy better than 10 −15 . The test principle consists in comparing the accelerations of two proof masses of different composition in the Earth gravitational field. The payload embarks two pairs of test-masses made of Platinum Rhodium and Titanium alloys at the core of two dedicated coaxial electrostatic accelerometers. These instruments are under qualification for a launch in 2016. Their operations are only possible in microgravity environment which makes its validation on ground a real issue. In Europe, only the drop tower of the ZARM Institute provides a facility for experiments under conditions of weightlessness and offers the experimental conditions to verify the correct functioning of the MICROSCOPE payload. The height of the tower limits the “free fall” experiment period to 4.72 s. Under this strong constraint, the demonstration of the capability to control the test masses of the two coaxial electrostatic accelerometers is challenging. This paper describes the complete experimental set up and in which condition the test has been performed, then an analysis of a drop result is given with its interpretations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    7
    Citations
    NaN
    KQI
    []