Localized IP3-evoked Ca2+ release activates a K+ current in primary vagal sensory neurons.

2004 
Electrophysiological and microfluorimetric techniques were used to determine whether intracellular photorelease of caged IP3, and the consequent release of Ca2+, could trigger a Ca2+-activated K+ current (IIP3). Photorelease of caged IP3 evoked an IIP3 that averaged 2.36 ± 0.35 (SE) pA/pF in 24 of 28 rabbit primary vagal sensory neurons (nodose ganglion neurons, NGNs) voltage-clamped at –50 mV. IIP3 was abolished by intracellular BAPTA (2 mM), a Ca2+ chelator. Changing the K+ equilibrium potential by increasing extracellular K+ ion concentration caused a predicted Nernstian shift in the reversal potential of IIP3. These results indicated that IIP3 was a Ca2+-dependent K+ current. IIP3 was unaffected by three common antagonists of Ca2+-activated K+ currents: bath-applied iberiotoxin (50 nM) or apamin (100 nM), and intracellular 8-Br-cAMP (100 μM) included in the patch pipette. We have previously demonstrated that both IP3-evoked Ca2+ release and Ca2+-induced Ca2+ release (CICR) are co-expressed in NGNs and...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    16
    Citations
    NaN
    KQI
    []