Multi-Level Analysis of Pulsed Detonation Engines

2001 
The present study explores some issues concerning the operational performance of pulsed detonation engines. Zero-, one- and two-dimensional, transient models are employed in a synergistic manner to elucidate the various characteristics that can be expected from each level of analysis. The zero-dimensional model provides rapid parametric trends that help to identify the global characteristics of pulsed detonation engines. The one-dimensional model adds key wave propagation issues that are omitted in the zero-dimensional model and helps to assess its limitations. Finally, the two-dimensional model allows estimates of the first-order multi-dimensional effects and provides an initial multi-dimensional end-correction for the one-dimensional model. The zero-dimensional results indicate that the pulsed detonation engine is competitive with a rocket engine when exhausting to vacuum conditions. At finite back pressures, the PDE out-performs the rocket if the combustion pressure rise from the detonation is added to the chamber pressure in the rocket. If the two peak pressures are the same, the rocket performance is higher. Two-dimensional corrections added to the one-dimensional model result in a modest improvement in predicted specific impulse over the constant pressure boundary condition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []