State-independent preparation uncertainty relations

2018 
Preparation uncertainty relations establish a trade-off in the statistical spread of incompatible observables. However, the Heisenberg-Robertson (or Schroedinger's) uncertainty relations are expressed in terms of the product of variances, which is null whenever the system is in an eigenstate of one of the observables. So, in this case the relation becomes trivial and in the other cases it must be expressed in terms of a state-dependent bound. Uncertainty relations based on the sum of variances do not suffer from this drawback, as the sum cannot be null if the observables are incompatible, and hence they can capture fully the concept of quantum incompatibility. General procedures to construct generic sum-uncertainty relations are not known. Here we present one such procedure, based on Lie algebraic properties of observables that produces state-independent bounds. We illustrate our result for the cases of the Weyl-Heisenberg algebra, special unitary algebras up to rank 4, and any semisimple compact algebra.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    13
    Citations
    NaN
    KQI
    []