Digestion in vitro of erythritol esters by rat pancreatic juice enzymes

1972 
: The mechanism of the digestion of erythritol esters was determined using rat pancreatic juice and purified pancreatic lipase (EC 3.1.1.3). Conditions of hydrolysis were used that would selectively activate or inactivate nonspecific lipase or lipase. It was shown that erythritol tetraoleate was hydrolyzed by nonspecific lipase but not by lipase. The initial digestion product was a triester, predominantly erythritol-1,2,3-trioleate. Thus, nonspecific lipase preferentially hydrolyzed the ester of a primary alcohol. In contrast to the results obtained with the tetraester, lipase could remove a fatty acid from the triester but the resulting erythritol-2,3-dioleate was not hydrolyzed by lipase. The selectivity of this hydrolysis and the inability to hydrolyze the diester are attributed to the known specificity of this enzyme to act only on esters of primary alcohols. Nonspecific lipase completely hydrolyzed erythritol tetraoleate to free erythritol in a stepwise manner. The relative rates of these reactions were tetraester --> triester --> diester --> monoester --> erythritol Because of the specificity of pancreatic lipase and the lack of specificity of nonspecific lipase it is likely that this latter enzyme is the primary agent for the hydrolysis of erythritol esters in the intact animal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    5
    Citations
    NaN
    KQI
    []