A Stable, Narrow-Gap Oxyfluoride Photocatalyst for Visible-Light Hydrogen Evolution and Carbon Dioxide Reduction

2018 
Mixed anion compounds such as oxynitrides and oxychalcogenides are recognized as potential candidates of visible-light-driven photocatalysts since, as compared with oxygen 2p orbitals, p orbitals of less electronegative anion (e.g., N3–, S2–) can form a valence band that has more negative potential. In this regard, oxyfluorides appear unsuitable because of the higher electronegativity of fluorine. Here we show an exceptional case, an anion-ordered pyrochlore oxyfluoride Pb2Ti2O5.4F1.2 that has a small band gap (ca. 2.4 eV). With suitable modification of Pb2Ti2O5.4F1.2 by promoters such as platinum nanoparticles and a binuclear ruthenium(II) complex, Pb2Ti2O5.4F1.2 worked as a stable photocatalyst for visible-light-driven H2 evolution and CO2 reduction. Density functional theory calculations have revealed that the unprecedented visible-light-response of Pb2Ti2O5.4F1.2 arises from strong interaction between Pb-6s and O-2p orbitals, which is enabled by a short Pb–O bond in the pyrochlore lattice due to the f...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    78
    Citations
    NaN
    KQI
    []