Identification of mutations that cooperate with defects in B cell transcription factors to initiate leukemia
2020
The transcription factors EBF1 and PAX5 are frequently mutated in B cell acute lymphoblastic leukemia (B-ALL). We demonstrate that Pax5+/- x Ebf1+/- compound heterozygous mice develop highly penetrant leukemia. Similar results were seen in Pax5+/- x Ikzf1+/- and Ebf1+/- x Ikzf1+/- mice for B-ALL, or in Tcf7+/- x Ikzf1+/- mice for T cell leukemia. To identify genetic defects that cooperate with Pax5 and Ebf1 compound heterozygosity to initiate leukemia, we performed a Sleeping Beauty (SB) transposon screen that identified cooperating partners including gain-of-function mutations in Stat5 (~65%) and Jak1(~68%), or loss-of-function mutations in Cblb (61%) and Myb (32%). These findings underscore the role of JAK/STAT5 signaling in B cell transformation and demonstrate unexpected roles for loss-of-function mutations in Cblb and Myb in leukemic transformation. RNA-Seq studies demonstrated upregulation of a PDK1>SGK3>MYC pathway; treatment of Pax5+/- x Ebf1+/- leukemia cells with PDK1 inhibitors blocked proliferation in vitro. Finally, we identified conserved transcriptional variation in a subset of genes between human leukemias and our mouse B-ALL models. Thus, compound haploinsufficiency for B cell transcription factors likely plays a critical role in transformation of human B cells and suggest that PDK1 inhibitors may be effective for treating patients with such defects.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
37
References
1
Citations
NaN
KQI