Diagnostic Utility of a Custom 34-Gene Anchored Multiplex PCR-Based Next-Generation Sequencing Fusion Panel for the Diagnosis of Bone and Soft Tissue Neoplasms With Identification of Novel USP6 Fusion Partners in Aneurysmal Bone Cysts.

2020 
CONTEXT.— Bone and soft tissue tumors are heterogeneous, diagnostically challenging, and often defined by gene fusions. OBJECTIVE.— To present our experience using a custom 34-gene targeted sequencing fusion panel. DESIGN.— Total nucleic acid extracted from formalin-fixed, paraffin-embedded (FFPE) tumor specimens was subjected to open-ended, nested anchored multiplex polymerase chain reaction and enrichment of 34 gene targets, thus enabling detection of known and novel fusion partners. RESULTS.— During a 12-month period, 145 patients were tested as part of routine clinical care. Tumor percentage ranged from 10% to 100% and turnaround time ranged from 3 to 15 (median, 7.9) days. The most common diagnostic groups were small round blue cell tumors, tumors of uncertain differentiation, fibroblastic/myofibroblastic tumors, and adipocytic tumors. In-frame fusion transcripts were identified in 64 of 140 cases sequenced (46%): in 62 cases, the detection of a disease-defining fusion confirmed the morphologic impression; in 2 cases, a germline TFG-GPR128 polymorphic fusion variant was detected. Several genes in the panel partnered with multiple fusion partners specific for different diagnoses, for example, EWSR1, NR4A3, FUS, NCOA2, and TFE3. Interesting examples are presented to highlight how fusion detection or lack thereof was instrumental in establishing accurate diagnoses. Novel fusion partners were detected for 2 cases of solid aneurysmal bone cysts (PTBP1-USP6, SLC38A2-USP6). CONCLUSIONS.— Multiplex detection of fusions in total nucleic acid purified from FFPE specimens facilitates diagnosis of bone and soft tissue tumors. This technology is particularly useful for morphologically challenging entities and in the absence of prior knowledge of fusion partners, and has the potential to discover novel fusion partners.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    2
    Citations
    NaN
    KQI
    []