The Composition Of A Disrupted Extrasolar Planetesimal At SDSS J0845+2257 (Ton 345)

2015 
We present a detailed study of the metal-polluted DB white dwarf SDSS J0845+2257 (Ton 345). Using high-resolution HST/COS and VLT spectroscopy, we have detected hydrogen and eleven metals in the atmosphere of the white dwarf. The origin of these metals is almost certainly the circumstellar disc of dusty and gaseous debris from a tidally-disrupted planetesimal, accreting at a rate of 1.6E10 gs^-1. Studying the chemical abundances of the accreted material demonstrates that the planetesimal had a composition similar to the Earth, dominated by rocky silicates and metallic iron, with a low water content. The mass of metals within the convection zone of the white dwarf corresponds to an asteroid of at least ~130-170 km in diameter, although the presence of ongoing accretion from the debris disc implies that the planetesimal was probably larger than this. While a previous abundance study of the accreted material has shown an anomalously high mass fraction of carbon (15 percent) compared to the bulk Earth, our independent analysis results in a carbon abundance of just 2.5 percent. Enhanced abundances of core material (Fe, Ni) suggest that the accreted object may have lost a portion of its mantle, possibly due to stellar wind stripping in the asymptotic giant branch. Time-series spectroscopy reveals variable emission from the orbiting gaseous disc, demonstrating that the evolved planetary system at SDSS J0845+2257 is dynamically active.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []