A monoclonal antibody to factor IX that inhibits the factor VIII:Ca potentiation of factor X activation.

1985 
Abstract A murine monoclonal antibody (IgG1k, Kd approximately 10(-8) M) specific for an epitope located on the heavy chain of human factor IXa was used to study structure-function relationships of factor IX. The antibody inhibited factor IX clotting activity but did not impair activation of factor IX either by factor XIa/calcium or by factor VIIa/tissue factor/calcium. The antibody also did not impair the binding of factor IXa to antithrombin III. Moreover, the antibody did not prevent calcium and phospholipid (PL) from inhibiting the binding of factor IXa to antithrombin III. The antibody also failed to impair activation of factor VII by factor IXa/calcium/PL. Furthermore, the antibody did not interfere with the very slow activation of factor X by factor IXa/calcium/PL. In contrast, the antibody did interfere with factor X activation when reaction mixtures also contained factor VIII:Ca/von Willebrand factor. The marked acceleration of factor X activation observed in control mixtures was not observed in mixtures containing the antibody. Similar results were obtained in reaction mixtures containing the Fab portion of the antibody and factor VIII:Ca free of von Willebrand factor. In additional experiments, factor VIII:Ca/von Willebrand factor was found to inhibit the binding of the antibody to 125I-factor IXa as determined using an immunosorbent assay. Moreover, the antibody displaced factor VIII:Ca from the factor X activator complex (IXa/calcium/PL/VIII:Ca) as evidenced by an altered elution pattern on gel filtration chromatography. From these observations, we conclude that the antibody impairs the clotting activity of factor IXa through interference with its binding of factor VIII:Ca. This suggests a significant role for the heavy chain (residues of 181-415) of factor IXa in binding factor VIII:Ca.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    59
    Citations
    NaN
    KQI
    []