Optimal Design and Prediction-Independent Verification of Groundwater Monitoring Network

2019 
In this study, we developed a workflow that applies a complex groundwater model for purpose-driven groundwater monitoring network design and uses linear uncertainty analysis to explore the predictive dependencies and provide insights into the veracity of the monitoring design. A numerical groundwater flow model was used in a probabilistic modelling framework for obtaining the spatial distribution of predicted drawdown for a wide range of plausible combination of uncertain parameters pertaining to the deep sedimentary basin and groundwater flow processes. Reduced rank spatial prediction was used to characterize dominant trends in these spatial drawdown patterns using empirical orthogonal functions (EOF). A differential evolution algorithm was used to identify optimal locations for multi-level piezometers for collecting groundwater pressure data to minimize predictive uncertainty in groundwater drawdown. Data-worth analysis helps to explore the veracity of the design by using only the sensitivities of the observations to predictions independent of the absolute values of predictions. A 10-bore monitoring network that collects drawdown data from multiple depths at each location was designed. The data-worth analysis revealed that the design honours sensitivities of the predictions of interest to parameters. The designed network provided relatively high data-worth for minimizing uncertainty in the drawdown prediction at locations of interest.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    7
    Citations
    NaN
    KQI
    []