Multi-field characteristics and eigenmode spatial structure of geodesic acoustic modes in DIII-D L-mode plasmas

2013 
The geodesic acoustic mode (GAM), a coherent form of the zonal flow, plays a critical role in turbulence regulation and cross-magnetic-field transport. In the DIII-D tokamak, unique information on multi-field characteristics and radial structure of eigenmode GAMs has been measured. Two simultaneous and distinct, radially overlapping eigenmode GAMs (i.e., constant frequency vs. radius) have been observed in the poloidal E×B flow in L-mode plasmas. As the plasma transitions from an L-mode to an Ohmic regime, one of these eigenmode GAMs becomes a continuum GAM (frequency responds to local parameters), while the second decays below the noise level. The eigenmode GAMs occupy a radial range of ρ = 0.6–0.8 and 0.75–0.95, respectively. In addition, oscillations at the GAM frequency are observed for the first time in multiple plasma parameters, including ne, Te, and Bθ. The magnitude of Te/Te at the GAM frequency (the magnitude is similar to that of ne/ne) and measured ne–Te cross-phase (∼140° at the GAM frequen...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    32
    Citations
    NaN
    KQI
    []