Geostrophic Adjustment Problems in a Polar Basin

2012 
The geostrophic adjustment of a homogeneous fluid in a circular basin with idealized topography is addressed using a numerical ocean circulation model and analytical process models. When the basin is rotating uniformly, the adjustment takes place via excitation of boundary propagating waves and when topography is present, via topographic Rossby waves. In the numerically derived solution, the waves are damped because of bottom friction, and a quasi-steady geostrophically balanced state emerges that subsequently spins-down on a long time scale. On the f-plane, numerical quasi-steady state solutions are attained well before the system's mechanical energy is entirely dissipated by friction. It is demonstrated that the adjusted states emerging in a circular basin with a step escarpment or a top hat ridge, centred on a line of symmetry, are equivalent to that in a uniform depth semicircular basin, for a given initial condition. These quasi-steady solutions agree well with linear analytical solutions for the lat...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    8
    Citations
    NaN
    KQI
    []