An artificial antigen-presenting cell delivering 11 immune molecules expands tumor antigen-specific CTLs in ex vivo and in vivo murine melanoma models
2019
Antigen-presenting cells expand antigen-specific T cells ex vivo and in vivo for tumor immunotherapy, but are time-consuming to generate and, as live cells, raise biosafety concerns. An alternative is found in cell-free artificial antigen-presenting cells (aAPCs), but these only present two or three kinds of immune molecules. Here we describe a multipotent artificial antigen-presenting cell (MaAPC) that delivered 11 kinds of immune moleclues. This MaAPC simulated natural APCs through the concurent coupling of target antigens (H-2Kb/TRP2180-188-Ig dimers and H-2Db/gp10025-33-Ig dimers), costimulatory molecules (anti-CD28, anti-4-1BB, and anti-CD2), and "self-marker" CD47-Fc onto surface-modified polylactic-co-glycolic acid microparticles (PLGA-MPs). These PLGA-MPs also encapsulated cytokines (IL2 and IL15), a chemokine (CCL21), and checkpoint inhibitors (anti-CTLA-4 and anti-PD-1). Culture of MaAPCs with naive T cells for 1 week elevated the frequencies of TRP2180-188-specific and gp10025-33-specific CTLs to 51.0% and 43.3%, respectively, with enhanced cytotoxicity. Three infusions of MaAPCs inhibited subcutaneous melanoma growth in a mouse model and expanded TRP2180-188 and gp10025-33-specific CTLs 59~86 fold in peripheral blood, 76~77 fold in spleen, and 205~212 fold in tumor tissue, in an antigen-specific manner. Compared with conventional aAPCs carrying two or three immune molecules, the 11-signal MaAPCs exerted greater impact on T cells, including activation, proliferation, cytotoxicity, differentiation to memory CTLs or regulatory T cells, and cytokines profiles, without detected side effects. Such MaAPCs could be used to individualize tumor immunotherapy.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
36
References
5
Citations
NaN
KQI