Overall survival in metastatic melanoma correlates with pembrolizumab exposure and T cell exhaustion markers

2021 
Trial data support an absence of an exposure-survival relationship for pembrolizumab. As these relationships remain unexamined in a real-world setting, we determined them in metastatic melanoma prospectively in an observational study. Translational objectives included identifying biomarkers of progressive disease (PD). Checkpoint blockade naive patients receiving 2 mg/kg Q3W pembrolizumab had pharmacokinetic and clinical outcome data collected. Trough, a valid surrogate for drug exposure, was assessed using ELISA. T-cell exhaustion and chemokine markers were determined using flow cytometry. Geometric means of exposures and biomarkers were tested against objective response groups using one-way ANOVA. The cohort was split by the median into high versus low pembrolizumab exposure groups. Kaplan-Meier progression-free survival (PFS) and overall survival (OS) curves were estimated for high versus low exposure, compared using the log rank test. The high pembrolizumab exposure group (n = 14) experienced substantially longer median OS (not reached vs. 48 months, p = .014), than the low exposure group (n = 14). A similar positive exposure PFS relationship was found (median not reached vs. 48 months, p = .045). The frequency of TIM-3 expression on CD4+ T cells was significantly higher in PD (mean 27.8%) than complete response (CR) (13.38%, p = .01) and partial response (12.4%, p = .05). There was a near doubling of CXCR6 and TIM-3 co-expression on CD4+ T cells in PD (mean 23.3%) versus CR (mean 11.4, p = .003) and partial response (9.8%, p = .0001). We describe positive exposure-PFS and exposure-OS relationships for pembrolizumab in metastatic melanoma. TIM-3, alongside co-expression of CXCR6 and TIM-3 on circulating CD4+ T cells are potential bio markers of treatment failure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []