Gene expression based inference of drug resistance in cancer

2021 
Inter and intra-tumoral heterogeneity are major stumbling blocks in the treatment of cancer and are responsible for imparting differential drug responses in cancer patients. Recently, the availability of large-scale drug screening datasets has provided an opportunity for predicting appropriate patient-tailored therapies by employing machine learning approaches. In this study, we report a predictive modeling approach to infer treatment response in cancers using gene expression data. In particular, we demonstrate the benefits of considering integrated chemogenomics approach, utilizing the molecular drug descriptors and pathway activity information as opposed to gene expression levels. We performed extensive validation of our approach on tissue-derived single-cell and bulk expression data. Further, we constructed several prostate cancer cell lines and xenografts, exposed to differential treatment conditions to assess the predictability of the outcomes. Our approach was further assessed on pan-cancer RNA-sequencing data from The Cancer Genome Atlas (TCGA) archives, as well as an independent clinical trial study describing the treatment journey of three melanoma patients. To summarise, we benchmarked the proposed approach on cancer RNA-seq data, obtained from cell lines, xenografts, as well as humans. We concluded that pathway-activity patterns in cancer cells are reasonably indicative of drug resistance, and therefore can be leveraged in personalized treatment recommendations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []