Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles

2016 
This article presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K6[V15As6O42(H2O)]·8H2O (in short V15), (2) the spin ball [Mo72Fe30O252(Mo2O7(H2O))2(Mo2O8H2(H2O)) (CH3COO)12(H2O)91]·150H2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl2tachH)3Cl]Cl2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determined in both the nonfrustrated total spin ST = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate ST = 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T1) measurements. In the ST = 3/2 state, 1/T1 shows thermally activated behaviour as a function of temperature. On the other hand, the ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []