Experimental Evaluation of Procedures for Heat Capacity Measurement by Differential Scanning Calorimetry

2001 
Experimental evaluation of the procedures adopted for heat capacity measurements employing differential scanning calorimetry (DSC) has been carried out by taking nickel and sapphire as test samples. Among the various methodologies reported in literature, the absolute dual step method was chosen for this purpose due to its simplicity and minimum number of measurements required. By proper temperature and heat flux calibration employing indium as reference, it was possible to obtain the calibration factor independent of temperature. This was ascertained by analysing other pure metals namely Sn, Zn, Cd, and Pb and determining their melting temperatures and heats of melting. Various operator- and sample-dependent parameters such as heating rate, sample mass, the structure of the sample, reproducibility and repeatability in the measurements were investigated. Heat capacities of both nickel and sapphire have been determined using the above method. Further, the heat capacity of nickel has also been determined using the widely employed three-step method taking sapphire as the heat flux calibration standard. Both methods yielded the comparable heat capacity values for nickel. Based on the parameters investigated and their influence, it could be concluded that reasonably precise and accurate heat capacity measurements are possible with DSC. One advantage of this method is the elimination of a separate calibration run using a reference material of known heat capacity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    19
    Citations
    NaN
    KQI
    []