Femtosecond time-resolved spectroscopic observation of long-lived charge separation in bimetallic sulfide/g-C3N4 for boosting photocatalytic H2 evolution

2020 
Abstract Copper-nickel sulfides could effectively suppress deep trapping states of active charge in carbon nitride. It also improves the efficiency of the shallow trapped electron transfer through C S bond for enhancing visible-light-driven photocatalytic hydrogen production with rates up to 752.8 μmol h−1 g−1, that is 470 times higher than that of pristine g-C3N4 (1.6 μmol h−1 g−1) so far. The kinetic coupling of electron transfer and long-lived charge separation (∼ 4896 ps) are systematically investigated by femtosecond time-resolved absorption spectroscopy (fs-TA). The TA signal of the composite is quenched by hole sacrificial agent, assigning to the effective hole extraction for high photocatalytic activity. Furthermore, a remarkable near-infrared-driven photocatalytic H2 evolution (0.32 μmol h−1 g−1, λ > 800 nm) was achieved due to the hole transfer from copper-nickel sulfide to the trap state of g-C3N4, indicating that the strong interaction between copper-nickel sulfide and g-C3N4 is favorable to charge transfer and long-lived charge separation states.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    31
    Citations
    NaN
    KQI
    []