Influences of Vibrio cholerae Lipid A Types on LPS Bilayer Properties.

2021 
Lipopolysaccharides (LPS) present in the outer leaflet of Gram-negative bacterial outer membranes protect the bacteria from external threats and influence antibiotic permeability as well as immune system recognition. The structure of lipid A, the anchor of an LPS molecule to the outer membrane, can make direct influences on membrane properties. Particularly, in Vibrio cholerae, a Gram-negative bacterium responsible for cholera, a severe diarrheal disease, modifications of lipid A structures grant antibiotic resistance and are a primary factor that led to the current cholera pandemic. However, the difference in structural properties incurred by such modifications has not been fully explored. In this work, five symmetric bilayer systems comprised of distinct lipid A structures of Vibrio cholerae LPS with O1 O-antigen were modeled and simulated to explore influences of different lipid A types on membrane properties. All-atom molecular dynamics simulations reveal that membrane properties such as hydrophobic thickness, acyl chain order parameter, and area per lipid are largely impacted by lipid A modifications due to differences in composition and acyl chain distortions. The modified lipid A is also less negatively charged, which possibly reveals a resistance mechanism to cationic antimicrobial peptide evasion. These findings present a possible explanation for Vibrio cholerae's immune system evasion properties and establish the differences between the lipid A types, which should be of use for any future study of the Gram-negative bacteria.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    1
    Citations
    NaN
    KQI
    []