Evaluation of a Novel Tilapia-skin Acellular Dermis Matrix Rationally Processed for Enhanced Wound Healing

2021 
Acellular Dermal Matrix (ADM) is mainly made with human or porcine skins and has the risk of zoonotic virus transmission. The fish skin-derived ADM could overcome the shortcoming. Fish skin acellular matrix has been used as wound dressing, but there is few systematic studies on tilapia-skin acellular dermal matrix (TS-ADM). In the present study, a novel TS-ADM was made by an alkaline decellularization process and γ-irradiation. The physical properties, biocompatibility, pre-clinical safety and wound healing activity of TS-ADM were systematically evaluated for its value as a functionally bioactive wound dressing. Histopathological analysis (hematoxylin and eosin staining, 4,6-diamidino-2-phenylindole (DAPI) staining) and DNA quantification both proved that the nuclear components of tilapia skin were removed sufficiently in TS-ADM. Compared to the commercial porcine acellular dermal matrix (DC-ADM), TS-ADM has distinctive features in morphology, thermal stability, degradability and water vapor transmission. TS-ADM was more readily degradable than DC-ADM in vitro and in vivo. In both rat and mini-pig skin wound healing experiments, TS-ADM was shown to significantly promote granulation growth, collagen deposition, angiogenesis and re-epithelialization, which may be attributed to the high expression of transforming growth factor-beta 1 (TGF-β1), alpha-smooth muscle actin (α-SMA) and CD31. Herein, the novel TS-ADM, used as a low-cost bioactive dressing, could form a microenvironment conducive to wound healing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    2
    Citations
    NaN
    KQI
    []