In vitro evaluation of drug delivery behavior for inhalable amorphous nanoparticle formulations in a human lung epithelial cell model.

2021 
Abstract Respiratory tract infections caused by multidrug-resistant (MDR) Gram-negative bacteria such as Pseudomonas aeruginosa are serious burdens to public health, especially in cystic fibrosis patients. The combination of colistin, a cationic polypeptide antibiotic, and ivacaftor, a cystic fibrosis transmembrane regulator (CFTR) protein modulator, displays a synergistic antibacterial effect against P. aeruginosa. The primary aim of the present study is to investigate the transport, accumulation and toxicity in lung epithelial Calu-3 cells of a novel nanoparticle formulation containing colistin and ivacaftor. The cell viability results demonstrated that ivacaftor alone or in combination with colistin in the physical mixture showed significant toxicity at an ivacaftor concentration of 10 µg/mL or higher. However, the cellular toxicity was significantly reduced in the nanoparticle formulation. Ivacaftor transport into the cells reached a plateau rapidly as compared to colistin. Colistin transport across the Calu-3 cell monolayer was less than ivacaftor. A substantial amount (46-83%) of ivacaftor, independent of dose, was accumulated in the cell monolayer following transport from the apical into the basal chamber, whereas the intracellular accumulation of colistin was relatively low (2-15%). The nanoparticle formulation significantly reduced the toxicity of colistin and ivacaftor to Calu-3 cells by reducing the accumulation of both drugs in the cell and potential protective effects by bovine serum albumin (BSA), which could be a promising safer option for the treatment of respiratory infections caused by MDR P. aeruginosa.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    1
    Citations
    NaN
    KQI
    []