Divide-and-Conquer Density-Functional Tight-Binding Molecular Dynamics Study on the Formation of Carbamate Ions during CO2 Chemical Absorption in Aqueous Amine Solution

2017 
Divide-and-conquer-type density-functional tight-binding molecular dynamics simulations of the CO2 absorption process in monoethanolamine (MEA) solution have been performed for systems containing thousands of atoms. The formation of carbamate anions has been widely investigated for neutral systems via ab initio molecular dynamics simulations, yet the present study is aimed at identifying the role of hydroxide ions in acid-base equilibrium. The structural and electronic analyses reveal that the hydroxide ion approaches, via Grotthuss-type shuttling, the zwitterionic intermediates and abstracts a proton from the nitrogen atom of MEA. We also estimated the fraction of reacted CO2 and carbamate formed at different initial CO2 concentrations that confirm a high absorbed CO2 concentration decreases the fraction of MEA(C) formed due to the abundance of MEA(Z) in the solution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    24
    Citations
    NaN
    KQI
    []