Cation selectivity is a conserved feature in the OccD subfamily of Pseudomonas aeruginosa

2012 
Abstract To achieve the uptake of small, water-soluble nutrients, Pseudomonas aeruginosa , a pathogenic Gram-negative bacterium, employs substrate-specific channels located within its outer membrane. In this paper, we present a detailed description of the single-channel characteristics of six members of the outer membrane carboxylate channel D (OccD) subfamily. Recent structural studies showed that the OccD proteins share common features, such as a closely related, monomeric, 18-stranded β-barrel conformation and large extracellular loops, which are folded back into the channel lumen. Here, we report that the OccD proteins displayed single-channel activity with a unitary conductance covering an unusually broad range, between 20 and 670 pS, as well as a diverse gating dynamics. Interestingly, we found that cation selectivity is a conserved trait among all members of the OccD subfamily, bringing a new distinction between the members of the OccD subfamily and the anion-selective OccK channels. Conserved cation selectivity of the OccD channels is in accord with an increased specificity and selectivity of these proteins for positively charged, carboxylate-containing substrates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    26
    Citations
    NaN
    KQI
    []