Prospectsof Heterogeneous Hydroformylation with SupportedSingle Atom Catalysts

2020 
The potential of oxide-supported rhodium single atom catalysts (SACs) for heterogeneous hydroformylation was investigated both theoretically and experimentally. Using high-level domain-based local-pair natural orbital coupled cluster singles doubles with perturbative triples contribution (DLPNO–CCSD­(T)) calculations, both stability and catalytic activity were investigated for Rh single atoms on different oxide surfaces. Atomically dispersed, supported Rh catalysts were synthesized on MgO and CeO2. While the CeO2-supported rhodium catalyst is found to be highly active, this is not the case for MgO, most likely due to increased confinement, as determined by extended X-ray absorption fine structure spectroscopy (EXAFS), that diminishes the reactivity of Rh complexes on MgO. This agrees well with our computational investigation, where we find that rhodium carbonyl hydride complexes on flat oxide surfaces such as CeO2(111) have catalytic activities comparable to those of molecular complexes. For a step edge on a MgO(301) surface, however, calculations show a significantly reduced catalytic activity. At the same time, calculations predict that stronger adsorption at the higher coordinated adsorption site leads to a more stable catalyst. Keeping the balance between stability and activity appears to be the main challenge for oxide supported Rh hydroformylation catalysts. In addition to the chemical bonding between rhodium complex and support, the confinement experienced by the active site plays an important role for the catalytic activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []