Study on the Deformation Mechanism of Reservoir Landslides Considering Rheological Properties of the Slip Zone Soil: A Case Study in the Three Gorges Reservoir Region

2020 
Reservoir water level fluctuation is one of the main extrinsic factors that could change the stress field in landslides, as well as the mechanical strength of geomaterials, hence affecting the deformation and stability of landslides. The largest reservoir landslide in the Three Gorges Reservoir area was selected for a case study. The impact of reservoir water level fluctuation is represented by the dynamic change in the underground seepage field and was thereby analyzed with numerical modeling. The deformation behavior considering the rheological properties of the slip zone soil was studied. The sudden change in the displacement–time curve was selected as the failure criterion for the investigated landslide. The evolution process of the accelerated deformation stage was divided into slow acceleration, fast acceleration, and rapid acceleration stages. The Huangtupo landslide is characterized by a retrogressive landslide and is currently in the creep deformation stage; the deformation mechanism and deformation characteristics are closely related to the reservoir water level fluctuation. Research was carried out by means of field investigation, in situ monitoring, and numerical simulation to provide a true and reliable result for stability evaluation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    3
    Citations
    NaN
    KQI
    []