Predicting future dynamics from short-term time series by anticipated learning machine

2020 
Predicting time series has significant practical applications over different disciplines. Here, we propose an Anticipated Learning Machine (ALM) to achieve precise future-state predictions based on short-term but high-dimensional data. From non-linear dynamical systems theory, we show that ALM can transform recent correlation/spatial information of high-dimensional variables into future dynamical/temporal information of any target variable, thereby overcoming the small-sample problem and achieving multistep-ahead predictions. Since the training samples generated from high-dimensional data also include information of the unknown future values of the target variable, it is called anticipated learning. Extensive experiments on real-world data demonstrate significantly superior performances of ALM over all of the existing 12 methods. In contrast to traditional statistics-based machine learning, ALM is based on non-linear dynamics, thus opening a new way for dynamics-based machine learning.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    7
    Citations
    NaN
    KQI
    []