Learning Transferable Driven and Drone Assisted Sustainable and Robust Regional Disease Surveillance for Smart Healthcare.

2020 
Given a set of Disease surveillance Area (DsA)s and Point of disease Surveillance (PoS)s, some sensors are deployed to monitor these PoSs, and a drone collect data from the sensors as well as charge the sensors to extend their life-cycles. The drone replenish its energy by relying on the bus network. We first formulate the drone assisted regional disease surveillance problem under the constraints of life-cycle of sensors and energy of drone, and propose an approximation algorithm to find a feasible cycle of drone to minimize the traveling time cost of drone. To satisfy the diversity requirements and dynamic scalability of regional disease surveillance, we deploy one robot in each DsA instead of sensors. We further formulate the learning transferable driven regional disease surveillance problem, and propose a joint schedule algorithm of drone and robots. The results of both theoretical analysis and extensive simulations show that the proposed algorithms can reduce the total time cost by 39.71% and 48.74% and average waiting time by 42.00% and 50.14%, and increase the average accessing ratio of PoSs by 15.53% and 22.30%, through the assistance of bus network and learning transferable features.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    3
    Citations
    NaN
    KQI
    []