A Minimalist Substrate for Enzymatic Peptide and Protein Conjugation

2009 
Recently a number of non-natural prenyl groups containing alkynes and azides have been developed as handles to perform click chemistry on proteins and peptides ending in the sequence “CAAX”, where C is a cysteine that becomes alkylated, A is an aliphatic amino acid and X is any amino acid. When such molecules are modified, a tag containing a prenyl analog and the “CAAX box” sequence remains. Here we report the synthesis of an alkyne-containing substrate comprised of only nine non-hydrogen atoms. This substrate was synthesized in six steps from 3-methyl-2-buten-1-ol and has been enzymatically incorporated into both proteins and peptides using protein farnesyltransferase. After prenylation the final three amino acids required for enzymatic recognition can be removed using carboxypeptidase Y, leaving a single residue (the cysteine from the “CAAX box”) and the prenyl analog as the only modifications. We also demonstrate that this small tag minimizes the impact of the modification on the solubility of the targeted protein. Hence, this new approach should be useful for applications in which the presence of a large tag hinders the modified protein's solubility, reactivity or utility.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    27
    Citations
    NaN
    KQI
    []