Upper airway collapsibility, dilator muscle activation and resistance in sleep apnoea

2007 
The calibre of the upper airway is thought to be dependant upon its passive anatomy/collapsibility and the activation of pharyngeal dilator muscles. During awake periods, the more collapsible upper airway in obstructive sleep apnoea (OSA) increases the dilator muscle activity through a negative-pressure reflex. A direct correlation between the critical closing pressure ( P crit), as a measure of anatomy/collapsability and electromyogram (EMG) activity of genioglossus EMG (GG-EMG) and tensor palatini EMG (TP-EMG), was hypothesised. The relationship between these indices and pharyngeal resistance ( R phar) was also examined. The study involved eight males with a mean age of 48 (interquartile range 46–52) yrs with OSA, and an apnoea/hypopnoea index of 75 (65–101)·hr−1 on two nights breathing normally and on nasal continuous positive airway pressure (nCPAP). The P crit was measured during nonrapid eye movement sleep on nCPAP using brief, incremental reductions in mask pressure. GG-EMG and TP-EMG were measured breath-by-breath, awake, during sleep onset and on nCPAP. R phar was measured using airway pressures and flow. Wakeful GG-EMG, early sleep TP-EMG and the sleep decrement in TP-EMG were directly related to P crit. Muscle activation was negatively correlated with R phar for TP-EMG awake and GG-EMG early in sleep. In conclusion these results confirm that dilator muscle activation is directly related to airway narrowing and reduces resistance across patients with obstructive sleep apnoea.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    64
    Citations
    NaN
    KQI
    []