Magnetic Solitons in a Spin-1 Bose-Einstein Condensate

2020 
Vector solitons are a type of solitary or nonspreading wave packet occurring in a nonlinear medium composed of multiple components. As such, a variety of synthetic systems can be constructed to explore their properties, from nonlinear optics to ultracold atoms, and even in metamaterials. Bose-Einstein condensates have a rich panoply of internal hyperfine levels, or spin components, which make them a unique platform for exploring these solitary waves. However, existing experimental work has focused largely on binary systems confined to the Manakov limit of the nonlinear equations governing the soliton behavior, where quantum magnetism plays no role. Here we observe, using a "magnetic shadowing" technique, a new type of soliton in a spinor Bose-Einstein condensate, one that exists only when the underlying interactions are antiferromagnetic and which is deeply embedded within a full spin-1 quantum system. Our approach opens up a vista for future studies of "solitonic matter" whereby multiple solitons interact with one another at deterministic locations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    19
    Citations
    NaN
    KQI
    []