Learning temporal integration from internal feedback

2019 
There has been much focus on the mechanisms of temporal integration, but little on how circuits learn to integrate. In the adult oculomotor system, where a neural integrator maintains fixations, changes in integration dynamics can be driven by visual error signals. However, we show through dark-rearing experiments that visual inputs are not necessary for initial integrator development. We therefore propose a vision-independent learning mechanism whereby a recurrent network learns to integrate via a 9teaching9 signal formed by low-pass filtered feedback of its population activity. The key is the segregation of local recurrent inputs onto a dendritic compartment and teaching inputs onto a somatic compartment of an integrator neuron. Model instantiation for oculomotor control shows how a self-corrective teaching signal through the cerebellum can generate an integrator with both the dynamical and tuning properties necessary to drive eye muscles and maintain gaze angle. This bootstrap learning paradigm may be relevant for development and plasticity of temporal integration more generally.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    1
    Citations
    NaN
    KQI
    []