A Phase I, Randomized, Double-Blind, Placebo-Controlled, Single-Dose and Multiple-Rising-Dose Study of the BTK Inhibitor TAK-020 in Healthy Subjects.

2021 
Bruton's tyrosine kinase (BTK) is a target for treatment of hematologic malignancies and autoimmune diseases. TAK-020 is a highly selective covalent BTK inhibitor that inhibits both B cell receptor and fragment crystallizable receptor signaling. We assessed the safety/tolerability and pharmacokinetics/pharmacodynamics (PDs) of TAK-020 in healthy subjects. Each cohort of the single-rising dose (n = 72; 9 cohorts) and the multiple-rising dose (n = 48; 6 cohorts) portions of the study comprised six TAK-020-treated and two placebo-treated, subjects aged 18-55 years (inclusive). The PD effects were assessed by measuring BTK occupancy and the inhibition of fragment crystallizable epsilon receptor 1 (FceRI)-mediated activation of basophils. Overall, treatment-emergent adverse events (TEAEs) were similar to placebo; there were no serious TEAEs or no TEAEs leading to discontinuation. TAK-020 was rapidly absorbed (median time to maximum plasma concentration (Tmax ) 45-60 minutes) with a half-life of ~ 3-9 hours at doses ≥ 2.5 mg. TAK-020 exposure was generally dose proportional for single doses ≤ 70 mg and after multiple doses of ≤ 60 mg once daily. Target occupancy was dose dependent, with doses ≥ 2.5 mg yielding maximum and sustained occupancy > 70% for > 96 hours. Single doses ≥ 4.4 mg reduced FceRI-mediated activation of basophils by > 80% and comparable inhibition was observed with daily dosing ≥3.75 mg for 9 days. Inhibition persisted for 24-72 hours postdose and the duration generally increased with dose. TAK-020 was generally well-tolerated in healthy subjects after single and multiple doses and demonstrated target engagement and pathway modulation. The PD effects outlasted drug exposures, as expected for covalent inhibition of BTK.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    1
    Citations
    NaN
    KQI
    []