Demographics of star-forming galaxies since z ∼ 2.5, I : the UVJ diagram in CANDELS

2018 
This is the first in a series of papers examining the demographics of star-forming galaxies at $0.2star-formation rates (SFRs), and dust attenuation ($A_V$) derived from UV-optical SED fitting. In agreement with previous works, we find that the $UVJ$ colors of a galaxy are closely correlated with its specific star-formation rate (SSFR) and $A_V$. We define rotated $UVJ$ coordinate axes, termed $S_\mathrm{SED}$ and $C_\mathrm{SED}$, that are parallel and perpendicular to the star-forming sequence and derive a quantitative calibration that predicts SSFR from $C_\mathrm{SED}$ with an accuracy of ~0.2 dex. SFRs from UV-optical fitting and from UV+IR values based on Spitzer/MIPS 24 $\mu\mathrm{m}$ agree well overall, but systematic differences of order 0.2 dex exist at high and low redshifts. A novel plotting scheme conveys the evolution of multiple galaxy properties simultaneously, and dust growth, as well as star-formation decline and quenching, exhibit "mass-accelerated evolution" ("downsizing"). A population of transition galaxies below the star-forming main sequence is identified. These objects are located between star-forming and quiescent galaxies in $UVJ$ space and have lower $A_V$ and smaller radii than galaxies on the main sequence. Their properties are consistent with their being in transit between the two regions. The relative numbers of quenched, transition, and star-forming galaxies are given as a function of mass and redshift.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    131
    References
    79
    Citations
    NaN
    KQI
    []