QMLE: A Methodology for Statistical Inference of Service Demands from Queueing Data

2018 
Estimating the demands placed by services on physical resources is an essential step for the definition of performance models. For example, scalability analysis relies on these parameters to predict queueing delays under increasing loads. In this article, we investigate maximum likelihood (ML) estimators for demands at load-independent and load-dependent resources in systems with parallelism constraints. We define a likelihood function based on state measurements and derive necessary conditions for its maximization. We then obtain novel estimators that accurately and inexpensively obtain service demands using only aggregate state data. With our approach, and also thanks to approximation methods for computing marginal and joint distributions for the load-dependent case, confidence intervals can be rigorously derived, explicitly taking into account both topology and concurrency levels of the services. Our estimators and their confidence intervals are validated against simulations and real system measurements for two multi-tier applications, showing high accuracy also in models with load-dependent resources.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    1
    Citations
    NaN
    KQI
    []