Optical induction of Bessel-like lattices in methyl-red doped liquid crystal cells

2015 
Abstract The optical induction of annular photonic lattices by a traveling Bessel beam has been investigated in Methyl-red (MR) doped nematic liquid crystal (LC). Non-diffracting Bessel beams were formed by an axicon. The induced Bessel-like lattice had a ~15 µm period in the radial direction. The lattice was tested by measuring the forward diffracted power of the recording Bessel beam. The dependency on the angle between the polarization of the laser beam and the director of the LC and on the axial position of the LC cell had been investigated. A diffraction efficiency of 14% had been obtained. Investigations have been performed for different MR dye doping concentrations. An erasure time of the lattice of 60 s has been determined by a 532 nm probe Gaussian beam of 2 mW in a LC cell with MR dye concentration of 1.15 wt%. The induced periodically varying refractive index in the LC medium is analogous to microstructured fibers and allows the study of light localization and soliton behavior in highly nonlinear waveguide arrays.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    3
    Citations
    NaN
    KQI
    []