Homotopy type of the unitary group of the uniform Roe algebra on $\mathbb{Z}^n$

2021 
We study the homotopy type of the space of the unitary group $\operatorname{U}_1(C^\ast_u(|\mathbb{Z}^n|))$ of the uniform Roe algebra $C^\ast_u(|\mathbb{Z}^n|)$ of $\mathbb{Z}^n$. We show that the stabilizing map $\operatorname{U}_1(C^\ast_u(|\mathbb{Z}^n|))\to\operatorname{U}_\infty(C^\ast_u(|\mathbb{Z}^n|))$ is a homotopy equivalence. Moreover, when $n=1,2$, we determine the homotopy type of $\operatorname{U}_1(C^\ast_u(|\mathbb{Z}^n|))$, which is the product of the unitary group $\operatorname{U}_1(C^\ast(|\mathbb{Z}^n|))$ (having the homotopy type of $\operatorname{U}_\infty(\mathbb{C})$ or $\mathbb{Z}\times B\operatorname{U}_\infty(\mathbb{C})$ depending on the parity of $n$) of the Roe algebra $C^\ast(|\mathbb{Z}^n|)$ and rational Eilenberg--MacLane spaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    0
    Citations
    NaN
    KQI
    []