A theoretical study on the destruction of typical biomass tar components (toluene, phenol and naphthalene) by OH radical

2021 
Abstract The detailed reaction mechanism of OH radical destroying toluene, phenol and naphthalene was studied through quantum chemical calculations in the research. Theoretical results indicate that for phenol and toluene, OH radical preferentially attack the ortho C atom due to the functional group on the benzene ring. But for naphthalene, OH radical preferentially attack the para-position C atoms because of its inherent benzo structure. To further study of the kinetics, the rate constant was calculated by the transition state theory. The comparison shows that the theoretical reaction rate constants for the degradation of tar by the OH radical were consistent with those obtained from literature experiments. And the rate constant of destructing naphthalene by OH radical was larger than that of destructing toluene, but lower than that of destructing phenol. The degradation sequence of OH radical to tar is: phenol>naphthalene>toluene. Because of the activation of hydroxyl group in benzene ring, phenol is the most easily attacked and destroyed by OH radical. The theoretical results can provide theoretical basis and data reference for further research on the removal of biomass tar and aromatics by OH radical.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []