Multistage melt impregnation in Tethyan oceanic mantle: Petrochemical constraints from channelized melt flow in the Naga Hills Ophiolite

2021 
Abstract Ophiolitic sequences obducted onto continental margins allow field based observations coupled with petrochemical interrogations of upper mantle lithologies thereby aiding evaluation of compositional heterogeneity of oceanic mantle, depletion-enrichment events and geodynamic conditions governing oceanic lithosphere formation. The Naga Hills Ophiolite (NHO) suite preserves a segment of the Neotethyan oceanic lithosphere encompassing a package of mantle and crustal lithologies. This paper for the first time reports the occurrence of melt flow channels traversing the mantle section near Molen of the NHO and presents a comprehensive study involving chromite-spinel chemistry, bulk rock major, trace and PGE geochemistry to understand the petrogenesis and evolution in a geodynamic transition from mid oceanic ridge (MOR) to suprasubduction zone (SSZ). The spinel chemistry of peridotitic melt channels depicts both MOR-type and SSZ signatures underlining a transitional tectonic frame. Chromite chemistry and high Al2O3/TiO2 ranging from 15.98–35.70 in concurrence with low CaO/Al2O3 ranging from 0.03–0.53; and chondrite normalised LREE > MREE   1; and Pd/Pt avg. 0.85 for melt channels and 0.84 for host peridotites indicate fluid-fluxed metasomatism of fore arc mantle wedge with a S-undersaturated trend coupled with boninitic affinity. The mineral, trace, REE and PGE chemistry collectively emphasizes that the mantle peridotites of the NHO formed in a transitional geodynamic tectonic setting caused by fore arc extension during subduction initiation followed by rejuvenation by subduction derived fluids and boninitic melts, which typically are of the SSZ tectonic regime. The harzburgitic melt channels and host rock are refractory in nature, reflecting multiple episodes of melt extraction of about 5–15% and ~10–20% respectively from a spinel peridotite mantle source. The occurrences of these melt channels indicate segregation and percolation of melt through porous and channelized network in upper mantle peridotites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    127
    References
    0
    Citations
    NaN
    KQI
    []