On the conformation of tiazofurin analogues

1997 
Tiazofurin, an important inhibitor of inosine 5‘-monophosphate dehydrogenase, has been argued to possess a restricted glycosylic bond due to an energetically favorable intramolecular (1−4) electrostatic interaction between the partial positive sulfur and the negative oxygen of the ribose. This rigidity has been appointed as a plausible cause that leads to activity in the sulfur containing compounds as opposed to the inactive oxazofurin-like analogues (i.e. S is replaced by an oxygen) that lack this favorable interaction. We reinvestigated this notion by using computational methods to report that although the above interaction (or its lack) is likely to contribute to the low-energy conformation of these classes of molecules, the flexibility of the glycosylic bond is ultimately determined by steric interaction of the heteroatoms with the C2‘-H and O4‘ of the ribose. Application of this theory in the design of new analogues is presented as well.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    32
    Citations
    NaN
    KQI
    []