An sp2 and sp3 hybrid nanocrystalline carbon film electrode for anodic stripping voltammetry and its application for electrochemical immunoassay.

2012 
A hybridized nanocrystalline carbon film electrode consisting of sp2 and sp3 bonds was investigated to reveal the reduction properties of Cd2+ and for application as a highly sensitive and reliable electrochemical immunoassay. Conductive nanocrystalline carbon film consisting of about 60% sp2 and 40% sp3 bonds was fabricated using electron cyclotron resonance (ECR) sputtering equipment, and then the Cd2+ concentrations were measured with an ECR sputtered carbon (ECR nano-carbon) electrode by employing an anodic stripping voltammetry (ASV) technique. The preconcentrated Cd was analyzed with Kelvin probe force microscopy and energy dispersive X-ray spectroscopy while observing the morphology change with an atomic force microscope and a scanning electron microscope. The preconcentrated Cd on the ECR nano-carbon electrode was revealed to be a thin sheet structure, which was significantly different from the Cd on a conventional carbon material that grows with a coralloid structure. The background current during an ASV measurement maintains a low level equivalent to that found with boron-doped diamond because the surface of the ECR nano-carbon is robust and angstrom-level flat. The carbon-electrode performance for ASV was improved by controlling its structure at a nanometer scale without any metal doping or coating. Finally, the ECR nano-carbon was used for biomolecular determination by electrochemical immunoassay with a CdSe nanoparticle label. Electrochemical immunoassay results were successfully obtained with the ECR nano-carbon, and they correlated well with fluorescence results obtained for CdSe nanoparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    5
    Citations
    NaN
    KQI
    []