Protein dynamics and contact topology reveal protein-DNA binding orientation

2016 
Structure-encoded conformational dynamics are crucial for biomolecular functions. However, there is insufficient evidence to support the notion that dynamics play a role in guiding protein-nucleic acid interactions. Here, we show that protein–DNA docking orientation is a function of protein intrinsic dynamics, but the binding site itself does not display unique patterns in the examined spectrum of motions. This revelation is made possible by a novel technique that locates “dynamics interfaces” in proteins across which protein parts are anticorrelated in their slowest dynamics. A striking statistic is that such interfaces intersect the DNA in 97% of the 104 examined cases. These findings were then used to screen decoys generated by rigid-body docking of DNA molecules onto DNA-binding proteins. Using our method, the chance to discern near-native poses from non-native decoys increased by 2.5- and 1.6-fold, as compared to a random guess and methods based on surface complementarity, respectively. Hence, dynami...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    7
    Citations
    NaN
    KQI
    []