CNTNAP2 ectodomain, detected in neuronal and CSF sheddomes, modulates Ca2+ dynamics and network synchrony

2019 
While many neuronal membrane-anchored proteins undergo proteolytic cleavage, little is known about the biological significance of neuronal ectodomain shedding. Using mass spectrometry (MS)-based proteomics, we showed that the neuronal sheddome mirrors human cerebrospinal fluid (hCSF). Among shed synaptic proteins in hCSF was the ectodomain of CNTNAP2 (CNTNAP2-ecto), a risk factor for neurodevelopmental disorders (NDD). Using structured-illumination microscopy (SIM), we mapped the spatial organization of neuronal CNTNAP2-ecto shedding. Using affinity chromatography followed by MS, we identified the ATP2B/PMCA Ca2+ extrusion pumps as novel CNTNAP2-ecto binding partners. CNTNAP2-ecto coimmunoprecipitates with PMCA2, a known autism risk factor, and enhances its activity, thereby modulating neuronal Ca2+ levels. Finally, we showed that CNTNAP2-ecto regulates neuronal network synchrony in primary cultures and brain slices. These data provide new insights into the biology of synaptic ectodomain shedding and reveal a novel mechanism of regulation of Ca2+ homeostasis and neuronal network synchrony.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    1
    Citations
    NaN
    KQI
    []