Recombinant GPVI-Fc added to single or dual antiplatelet therapy in vitro prevents plaque-induced platelet thrombus formation

2017 
The efficiency of current dual antiplatelet therapy might be further improved by its combination with a glycoprotein (GP) VI-targeting strategy without increasing bleeding. GPVI-Fc, a recombinant dimeric fusion protein binding to plaque collagen and concealing binding sites for platelet GPVI, acts as a lesion-focused antiplatelet drug, and does not increase bleeding in vivo. We investigated, whether GPVI-Fc added in vitro on top of acetylsalicylic acid (ASA), the P2Y12 antagonist ticagrelor, and the fibrinogen receptor antagonist abciximab alone or in combination would increase inhibition of platelet activation by atherosclerotic plaque. Under static conditions, GPVI-Fc inhibited plaque-induced platelet aggregation by 53 %, and increased platelet inhibition by ASA (51 %) and ticagrelor (64 %) to 66 % and 80 %, respectively. Under arterial flow, GPVI-Fc inhibited plaque-induced platelet aggregation by 57 %, and significantly increased platelet inhibition by ASA (28 %) and ticagrelor (47 %) to about 81 % each. The triple combination of GPVI-Fc, ASA and ticagrelor achieved almost complete inhibition of plaque-induced platelet aggregation (93 %). GPVI-Fc alone or in combination with ASA or ticagrelor did not increase closure time measured by the platelet function analyzer (PFA)-200. GPVI-Fc added on top of abciximab, a clinically used anti-fibrinogen receptor antibody which blocks platelet aggregation, strongly inhibited total (81 %) and stable (89 %) platelet adhesion. We conclude that GPVI-Fc added on top of single or dual antiplatelet therapy with ASA and/or a P2Y12 antagonist is likely to improve anti-atherothrombotic protection without increasing bleeding risk. In contrast, the strong inhibition of platelet adhesion by GPVI-Fc in combination with GPIIb/IIIa inhibitors could be harmful.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    13
    Citations
    NaN
    KQI
    []