hMMS2 serves a redundant role in human PCNA polyubiquitination

2008 
Background In yeast, DNA damage leads to the mono and polyubiquitination of the sliding clamp PCNA. Monoubiquitination of PCNA is controlled by RAD18 (E3 ligase) and RAD6 (E2 conjugating enzyme), while the extension of the monoubiquitinated PCNA into a polyubiquitinated substrate is governed by RAD5, and the heterodimer of UBC13/MMS2. Each modification directs a different branch of the DNA damage tolerance pathway (DDT). While PCNA monoubiquitination leads to error-prone bypass via TLS, biochemical studies have identified MMS2 along with its heteromeric partner UBC13 to govern the error-free repair of DNA lesions by catalyzing the formation of lysine 63-linked polyubiquitin chains (K63-polyUb). Recently, it was shown that PCNA polyubiquitination is conserved in human cells and that this modification is dependent on RAD18, UBC13 and SHPRH. However, the role of hMMS2 in this process was not specifically addressed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    20
    Citations
    NaN
    KQI
    []